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An R-matrix approach to the quantization of the Euclidean 
group 

A Ballesterostg, E Celeghinit, R Giachettijll, E Soracet and M Tarlinit 
t Dipartimento di Fisica, Univenifa di Firenz and 1NFN.Firenze. Italy 
t Dipattimento di Matematica. Udversifa di Bologna and WFN-Firrnze, IIaIy 

Received 13 July 1993 

Abstract. The R-mauices for two different deformations oftheEudideangroup E ( 2 h  calculated 
in a two-dimensional repmentation, are used to determine ik deformed Hopf algebra of the 
representative functions. The duality of the l a m  wifh the initial quantum algebm is explicitly 
proved and h e  relationship between the two quanNm goups is discussed and clarified. 

1. Introduction 

The quantization of compact Lie groups has reached a considerable level of completeness, 
both on the side of the algebraic structure as well as on the determination and classification 
of the representations. The state of the art is different for non-semisimple groups. From 
the point of universal enveloping algebras the lack of a root decomposition prevents a well 
defined deformation procedure; from the point of the algebra of the representative functions 
difficulties are encountered due to the absence of general results like the Peter-Weyl theorem 
or the Tannaka duality (see [I]  for the quantum version of these results). 

One of the simplest non-compact non-semisimple groups that has undergone a 
quantization procedure is the two-dimensional Euclidean group. The problem has been 
studied at a von Neumann algebra level in [Z], where the q-analogue of Bessel functions 
has been introduced. A purely algebraic treatment has been considered in [3] in connection 
with a general mechanism of contraction of Hopf algebras (see also [4]). Besides the 
quantum structure given in [Z], a new deformation has been found in [3], presenting the 
interesting feature that the quantum parameter can be reabsorbed by a suitable rescaling of 
the generators. In [SI the direct relevance of the pseudo-Euclidean version of this quantum 
algebra to phonon physics has been presented. A C*-algebra approach has finally been 
discussed in [6,7] and the analogue of the algebra of continuous functions vanishing at 
infinity has been determined. 

In some cases the contraction mechanism has also allowed for the calculation of an 
R matrix: whenever this has been possible, as for H,(I) and Eq(3)  [3,4], the quantization 
of the algebra of the representative functions has been obtained by using the fundamental 
representation in the framework proposed in [SI, although it has not been shown in general 
that the dual of the initial Hopf algebra is actually obtained. Unfortunately this circumstance 
does not occur for the two-dimensional Euclidean group: the contraction of the R matrix 
is badly divergent and the universal R matrix does not exist. A direct contraction of the 
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quantum group structure has been proposed in [7] by means of an approach leaning on two- 
dimensional matrix representations of S U ( 2 )  and E(2): the results are in full agreement 
with [Z], as has been shown in [9]. 

Despite the impossibility of getting an algebraic expression, in this paper we show that 
a direct calculation of the R matrix for the two deformations of E(2) can be made in a two- 
dimensional representation substantially equivalent to that presented in [7]. The consequent 
quantizations of the group in the scheme proposed in 181 can then be studied. What is 
found is that, in both cases, this procedure is not able to specify all the relations between 
the generators of Fun(E,(2)): the R matrix provides only some of them, the remaining ones 
being determined by intemal consistency and hy the compatibility with the coproduct. The 
actual calculations show that the quantum group given in [2,7] is recovered and that a new 
quantum group without parameters is found it is then shown that this quantum group is 
exactly the dual Hopf algebra to that given in [3]. We observe that an analogous calculation 
in a three-dimensional representation cannot be developed, since in such a representation 
no R matrix verifying the quantum Yang-Baxter equation exists. 

To conclude, we push the investigation a Little further and we see whether the consistency 
conditions and the compatibility with the coproduct alone are able to produce a slightly more 
general structure. In fact, using the two-dimensional representation, we find the most general 
expression for the product of the quantum group generators which are depending upon two 
deformation parameters. Again, one of these parameters can be eliminated by rescaling the 
generators. It is then realized that, when the other is non-vanishing, we can make a change 
of basis which shows that the structure we thus get is that given in [2,7]. However, for 
vanishing value of that parameter the transformation has a singularity and cannot be made: 
in this case the quantum group we obtain is just the quantum group without parameters. 
Thus we can draw an exhaustive picture of the deformations of E(2) and of the relationships 
between them. 

2. The R-matrix way to Euclidean quantum groups 

Let us first briefly recall the two contractions of SUp(2). leading to different quantizations 
of the universal enveloping algebra of E(2). The first, [2]. is obtained by rescaling the 
SU, (2) generators as follows: 

‘ (P , .P , .J , z )=d iagI~ ,~ .1 ,  I ~ ‘ ( J I . J ~ , J ~ , Z ) .  

Taking the limit E + 0 we obtain a quantum algebra whose relations are 

[P,. Pyl = 0 IJ, PJ = ify [ J ,  Py] = -if, (2.1) 

where e’ = q. The coproducts, antipodes and co-units are 

AJ = 1 @ J + J @ 1 AP, =e-2J12@ Pi t Pi @ e  z 512 

Y(J) = -J y(pi) = -ezJ12pie-~J12 (2.2) 

€(Pi) = E ( J )  = 0 

where i = x ,  y .  We shall refer to it as E&). 
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The second quantization of the twodimensional Euclidean algebra comes from the 
rescaling 

( J , P , ,  P.,w) = d i a g U , ~ . e , ~ - ' ) ' ( J ~ ,  5 2 . 5 3 , ~ )  1 

thus defining a new parameter w. The quantum algebra resulting in the limit E + 0 satisfies 
the relations 

[ P r .  Py] = 0 [J, P,] = if', [ J ,  P,] = -(i/w)sinh(wP,). (2.3) 

Moreover 

A P ~  = I 8 P, + pX CZI 1 AP, =e-wPX/'@ P, + pY BeWpJ2 

(2.4) 
y(Px)  = -P, y (Py)  = -Py y ( J )  = - J  + $wPy 
c ( P x ) = ~ ( P y ) = e ( J ) = O .  

It is then seen that, letting Pi + Pj/w, the deformation parameter can be reabsorbed. Due 
to its relevance in lattice physics [5],  we shall refer to it as E&!) (see [3] for details). 

Let us now consider the algebra Fun(E(2)) obtained by a two-dimensional representation 
with matrices of the form 

with v unitary and n complex. The coproducts of the matrix elements are 

AV = v @  U An = v @ n  + n  @ 1 A1 = 1 @ 1. (2.6) 

Making the extension by the conjugate i, of the grouplike unitary generator U, i,v = vir = 1, 
and by the conjugate ti of n, with 

A t  = i, 877 Aii = V @ t i  + ti @ 1 (2.7) 

we have the antipodes 

and co-units 

E (U) = ~ ( i , )  = ~ ( 1 )  = 1 c ( n )  = c ( i i )  =O. (2.9) 

The quantization of Fun(E(2)) is obtained by establishing non-commutative deformed 
relations among the generators, compatible with (2.6X2.9). This is the general framework 
used when a universal R matrix exists. Since for the twodimensional Euclidean quantum 
group there is no universal R matrix we shall determine such relations by calculating the 
R matrices for the quantum sbuctures E@) and E&2) directly in the representation (2.5). 



1498 A Ballesreros et a1 

To this purpose we observe that the infinitesimal generators, both in the quantum and non- 
quantum cases, are represented by 

-I  0 .=(; A) PP(; ;) J = (  o) .  (2.10) 

In the first place we shall look for a 4 x 4 matrix which transposes the coproduct, i.e. which 
satisfies the relation 

R A R - l  = P O A  

where P is the operator interchanging the two factors of the tensor product. Secondly this 
matrix is required to solve the Yang-Baxter equation 

RIZ R13 Ru = Ru R I ~  Riz .  

Besides the hivial solution R = P ,  for the quantum algebra Eq(2), we find, up to an 
equivalence, a unique solution Rq depending on the deformation parameter, namely 

(2. I I )  

It must be observed that the R matrix (2.1 1) is a special case of the general R matrix coming 
from the two-parameter deformation of GL(2). [lo, Il l .  Indeed, in the notation of 11 11 and 
up to a trivial change of basis, the expression (2.11) is just Rp,q with p = 1 and (I = e-'. 

Using the well known prescription 

R Ti Tz = Tz Ti R (2.12) 

with TI = T @ 1, T2 = 1 @ T, we find the following relations between the generators of the 
algebra Fun(& (2)): 

un = ez nu nij =ez Zn v i 7 = 1 .  (2.13) 

Assuming real z and conjugating (2.13) we then find 

i i j  = eL Gj j  v i  =ez i u .  (2.14) 

However, no relation between n and i can be obtained from (2.12). We can overcome 
this difficulty by requiring compatibility with (2.13) and (2.14) and with the homomorphism 
property of the coproduct. We get the solution 

nfi = e'in 

showing that v ,  n and i generate the algebra Fun(Eq(2)) given in 171. More exactly, if 
instead of (2.5) we used the representation 
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we would find the R matrix 

just giving the results found in [7] and equivalent to (2.13) and (2.14) provided we make 
the identifications [9] 

V = U  n = c u .  (2.15) 

The very same procedure applied to &(2) yields the R matrix 

1 1 - 1 0  .=(. 0 1  0 0 0  1 .) 
0 0  0 1 

which, again, is a special case of the two-parameter R matrix referred to in I l l ]  as the 
'Jordanian solution'. From (2.16) we obtain the equation 

v n - n v = v  2 - U  (2.17) 

the conjugate one and those deduced by the use of v77 = Cv = 1. For the relation involving 
n and ti we follow the previous approach obtaining 

[n ,  t i ]  = - (n  + t i )  (2.18) 

which completes the new Hopf algebra Fun(Et(2)). 

3. Duality 

The duality of E,(2) with Fun(E,(2)) has been explicitly proved in [9] and the topological 
aspects related to Fun(Eq(2)) have been deeply investigated in [6,7]. Neglecting a detailed 
topological study, in this section we shall prove that an analogous algebraic duality holds 
between Et@) and Fun(Ec(2)). 

We find it convenient to introduce the generators t, n l ,  n 2 ,  by means of the definitions 

(3.1) nl = i ( n  + t i )  112 = - t i )  

so that Fun(Et(2)) will be spanned by the ordered monomials in t ,  n l .  nz. A straightforward 
calculation yields the commutators 

1. it  v = e  

I t . n l l = i ( l  -cost) [ t ,nz l=is in t  [n l , nz l= in l .  (3.2) 

Let us introduce the elements r ,  U,, v2, dual to t, nl ,  nZ, i.e. satisfying 
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We shall first use the multiplication in Fun(EL(2)) in order to determine the coproduct of 
the dual Fm(Ee(2))' according to 

A(cY)(u @ b) = (CY, ab) CY E F~n(Ec(2))' U ,  b E F~l (Et(2) ) .  

Using (3.2) and (3.3). we then find 

A ( T )  = T @ I + cui@ 8 t 

A(%) = ur@ 1 + 1 @ ur. 
A ( v ~ )  = uI @ I +e+ U, 

(3.4) 

Conversely, let us consider the coproduct in Fun(Ec(2)) for obtaining the multiplication- 
and hence the commutation relations-in Fun(&@))'. As a result we have 

[ t , ~ ~ ] = - j i u ~ + $ , i ( ~ - e -  2iY ) [ z , y ] = u l  [ u ~ . u ~ ] = O .  (3.5) 

In order to obtain the antipode y in Fun(Et(2))' we use the relation  CY), a)  = (a, y(a) )  
and we get 

y ( ~ )  = -ei"+ y (u l )  = -e%, y(u2) = -UZ. (3.6) 

Finally we can determine an involution a H CY* in Fun(Et(2))' by (a', a )  = (CY,  y- ' (6)) .  
The result is 

T* - t + iu l  v * - -  I - U1 U; = -uz. (3.7) 

= ie-P'/Z(J + l i p  4 Y  ) ut = ie-pz/zPy y = -iP, (3.8) 

We are now able to compare Fun(Ec(2))' with ow initial algebra E&). The mapping 

is compatible with J* = J ,  P,' = Px, P; = Py and a comparison of (3.4H3.8) with 
(2.3),(24) shows that indeed Fun(Ec(2))' coincides with Et@). 

We shall conclude this paper by considering the relationship between the two 
deformations of E(2) we have so far discussed. We now consider again the representation 
( 2 5 )  with the related formulae (2.4)-(29) and we look for general expressions of the 
products vn and nri which are polynomial in the generators, self-consistent and compatible 
with the coproduct. 

A recurrence procedure gives the solution 

vn = e Z n v +  w ( v z  - v )  nii =eZiin - w ( n  +i i )  (3.9) 

where z and w are arbitmy parameters. Evidently for vanishing z or w we recover the 
previous results, while we can eliminate w # 0 by rescaling the generators n and it. It 
is directly verified that (3.9) together with (2.6H2.9) give a Hopf algebra which is a 
deformation of Fun(E(2)). However, for z # 0, we can define [I21 

(3.10) 

and we can easily verify that U, m, r f i  generate the Hopf algebra Fun(Eq(2)). The only 
singularity of the transformation is the value z = 0, where the deformation Fun(Ee(2)) 
arises. 
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